skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Omar, Mohamed"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract For numerical semigroups with a specified list of (not necessarily minimal) generators, we describe the asymptotic distribution of factorization lengths with respect to an arbitrary modulus. In particular, we prove that the factorization lengths are equidistributed across all congruence classes that are not trivially ruled out by modular considerations. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. de_Weerdt, Mathijs; Koenig, Sven; Röger, Gabriele; Spaan, Matthijs (Ed.)
    Flexibility is generally agreed to be a desirable feature of a Simple Temporal Network (STN). However, exactly what flexibility attempts to measure has varied, making it difficult to objectively evaluate flexibility metrics. Further, past metrics tend to lose information or exhibit other undesirable properties when aggregating the flexibility measures of individual events across an entire STN. Our work is driven by the realization that the solution space of an STN is a convex polyhedron whose geometric properties convey useful information about the STN. These geometric inspirations lead to measures of an STN solution space and also motivate a set of desiderata for general flexibility metrics. We also put forth two new geometrically-inspired flexibility metrics that have some theoretical advantages over existing metrics. Finally, we comprehensively evaluate both new and existing flexibility metrics against our proposed desiderata. 
    more » « less